A new approach to improve strength and ductility of laser powder deposited Inconel 718 thin-wall structure

[Abstract] Laser powder deposition of Inconel 718 superalloy has been considered as a promising technique for the restoration of damaged aerospace components. A novel gradient laser power (GLP) deposition method is proposed to build Inconel 718 thin-wall structures by gradually reducing laser powers. The method not only alleviates micro-segregation but also tunes detrimental Laves phases’ content, size and morphology by controlling the solidification conditions. Macroscopic features, geometrical characteristics (layer widths and layer heights), porosity, tailored microstructure, microhardness and room temperature tensile properties are systematically investigated. A unique microstructure containing discrete fine Laves phases and a mixture of equiaxed grains and fine columnar grains with no obvious texture is obtained in GLP samples due to the enhanced cooling process and multidirectional heat flux. The relationships among processing parameter, microstructure and mechanical properties are discussed in detail. Compared with samples deposited by the conventional constant laser power (CLP) deposition method, GLP samples exhibit an excellent combination of strength and ductility with considerable yield strength, high ultimate strength, prominent strain hardening exponent and superior ductility of 40%. The GLP method provides a useful strategy to tailor microstructures and improve mechanical properties by purposely manipulating processing parameters.

DOI: https://doi.org/10.1016/j.msea.2022.143871

友情链接: 上海交通大学 | 上海交大材料学院 | 上海市激光制造与材料改性重点实验室 | 智能化焊接与精密制造研究所 | 机器人焊接智能化技术实验室 

版权所有 © 2020-2023 上海交通大学先进材料智能制造实验室  All Rights Reserved     沪交ICP备20200283号